

TECHNICAL DATA FOR OMS

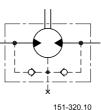
Туре			OMS	OMS	OMS	OMS	OMS	OMS	OMS	OMS	OMS
			OMSW	OMSW	OMSW	OMSW	OMSW	OMSW	OMSW	OMSW	OMSW
			OMSS	OMSS	OMSS	OMSS	OMSS	OMSS	OMSS	OMSS	OMSS
Motor size			80	100	125	160	200	250	315	400	500
	cm ³		80.5	100.0	125.7	159.7	200.0	250.0	314.9	393.0	488.0
Geometric displacemen	t [in³]		[4.91]	[6.10]	[7.67]	[9.75]	[12.20]	[15.26]	[19.22]	[23.98]	[29.78]
May around	min⁻¹	cont.	810	750	600	470	375	300	240	190	155
Max. speed	[rpm]	int ¹⁾	1000	900	720	560	450	360	285	230	185
		cont	240	305	375	490	610	720	825	865	850
Max.torque*	Nm	cont.	[2120]	[2700]	[3320]	[4340]	[5400]	[6370]	[7300]	[7660]	[7520]
Max. torque"	[lbf·in]	int. ¹⁾	310	390	490	600	720	870	1000	990	990
		int."	[2740]	[3450]	[4340]	[5310]	[6370]	[7700]	[8850]	[8760]	[8760]
		cont.	15.5	18.0	18.0	16.5	16.5	14.5	15.0	11.0	9.0
Max. output	kW	cont.	[20.8]	[24.1]	[24.1]	[22.1]	[22.1]	[19.4]	[20.1]	[14.8]	[12.1]
Max. Output	[hp]	int.1)	19.5	22.5	22.5	23.0	22.0	18.0	17.0	12.5	10.5
			[26.2]	[30.2]	[30.2]	[30.8]	[29.5]	[24.1]	[22.8]	[16.8]	[14.1]
		cont.	210	210	210	210	210	200	200	160	120
		cont.	[3050]	[3050]	[3050]	[3050]	[3050]	[2900]	[2900]	[2320]	[1740]
Max. pressure drop*	bar	int. ¹⁾	275	275	275	260	250	250	240	190	140
Max. pressure drop	[psi]		[3990]	[3990]	[3990]	[3770]	[3630]	[3630]	[3480]	[2760]	[2030]
		peak ²⁾	295	295	295	280	270	270	260	210	160
		реак	[4280]	[4280]	[4280]	[4060]	[3920]	[3920]	[3770]	[3050]	[2320]
		cont.	65	75	75	75	75	75	75	75	75
Max. oil flow	l/min	cont.	[17.2]	[19.8]	[19.8]	[19.8]	[19.8]	[19.8]	[19.8]	[19.8]	[19.8]
Max. OII HOW	[USgal/min]	int.1)	80	90	90	90	90	90	90	90	90
		IIIL. /	[21.1]	[23.8]	[23.8]	[23.8]	[23.8]	[23.8]	[23.8]	[23.8]	[23.8]
Max. starting pressure	bar		12	10	10	8	8	8	8	8	8
with unloaded shaft	[psi]		[175]	[145]	[145]	[115]	[115]	[115]	[115]	[115]	[115]
	at max. press	. drop cont.	180	230	290	370	470	560	710	710	660
Min. starting	Nm [lbf·in]		[1590]	[2040]	[2570]	[3270]	[4160]	[4960]	[6280]	[6280]	[5840]
torque	at max. press	. drop int. ¹⁾	235	300	380	460	560	700	850	840	770
	Nm [lbf·in]		[2080]	[2660]	[3360]	[4070]	[4960]	[6200]	[7520]	[7430]	[6820]

Туре			Max. inlet pressure	Max. return pressure with drain line
	bar	cont.	230	140
OMS OMSW OMSS	[psi]	[psi]	[3340]	[2030]
	bar	int.1)	295	175
	[psi]	IIIL."	[4280]	[2540]
	bar	peak ²⁾	300	210
	[psi]	реак	[4350]	[3050]

		Splined 1 in	Cyl. 1 in	Splined 0.875 in
	cont	360	300	200
*Max torque	Nm cont.	[3190]	[2660]	[1770]
for shaft type	[lbf·in] int. ¹⁾	450	410	200
	int."	[3980]	[3630]	[1770]

¹⁾ Intermittent operation: the permissible values may occur for max. 10% of every minute. ²⁾ Peak load: the permissible values may occur for max. 1% of every minute.

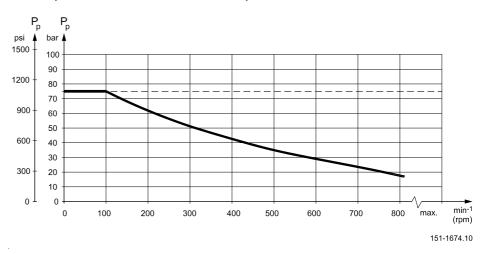
For max. permissible combination of flow and pressure, see function diagram for actual motor.

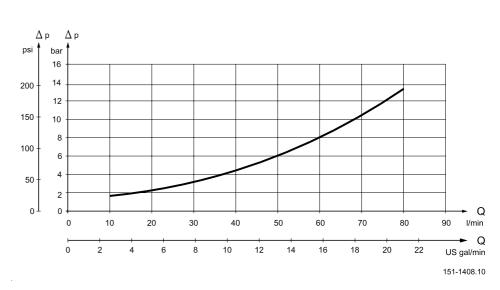


MAX. PERMISSIBLE SHAFT SEAL PRESSURE

PRESSURE DROP IN

MOTOR


OMS with standard shaft seal, check valves and <u>without</u> use of drain connection: The pressure on the shaft seal never exceeds the pressure in the return line

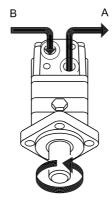

OMS with standard shaft seal, check valves and <u>with</u> drain connection:

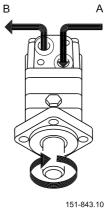
The shaft seal pressure equals the pressure on the drain line.

Max. return pressure without drain line or max. pressure in the drain line

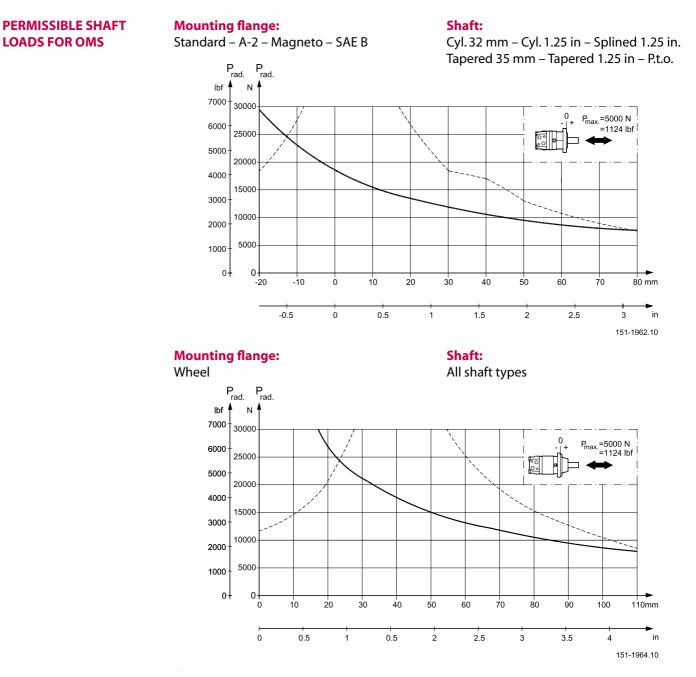
---- Intermittent operation: the permissible values may occur for max. 10% of every minute.

The curve applies to an unloaded motor shaft and an oil viscosity of 35 mm²/s [165 SUS]

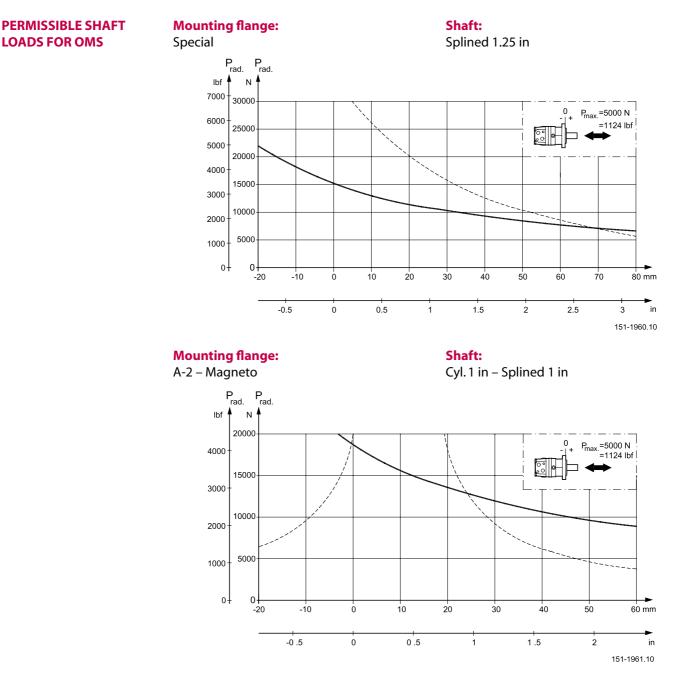

SAUER OMS DANFOSS Technical Information Technical data


OIL FLOW IN DRAIN LINE

The table shows the max. oil flow in the drain line at a return pressure less than 5-10 bar [75-150 psi].


Pressure drop	Viscosity	Oil flow in drain line
bar [psi]	mm²/s [SUS]	l/min [US gal/min]
[[231]	20	1.5
140	[100]	
140	[100]	[0.40]
[2030]	35	1.0
	[165]	[0.26]
	20	3.0
210	[100]	[0.79]
[3050]	35	2.0
	[165]	[0.53]

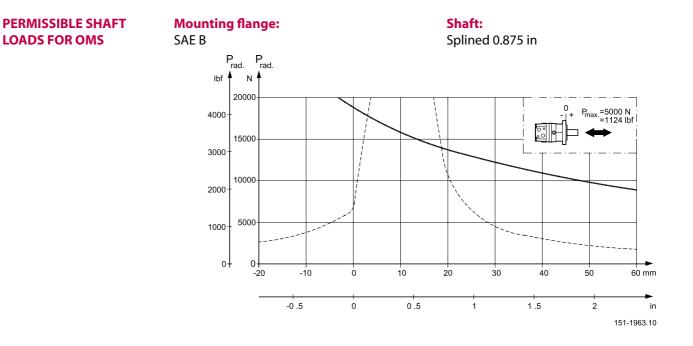
DIRECTION OF SHAFT ROTATION


The output shaft runs in tapered roller bearings that permit high axial and radial forces. The permissible radial load on the shaft is shown for an axial load of 0 N as a function of the distance from the mounting flange to the point of load application.

The curve is based on B10 bearing life (2000 hours or 12,000,000 shaft revolutions at 100 min⁻¹) at rated output torque, when mineral-based hydraulic oil with a sufficient content of anti-wear additives, is used.

For 3,000,000 shaft revolutions or 500 hours – increase these shaft loads with 52%. The dash curve shows max. radial shaft load. Any shaft load exceeding the values shown in the curve will involve a risk of breakage.

Bearing life calculations can be made using the explanation and formula provided in the chapter "Bearing dimensioning" in the technical information "General Orbital motors" DHMH.PK.100.G2.02 520L0232.


The output shaft runs in tapered roller bearings that permit high axial and radial forces. The permissible radial load on the shaft is shown for an axial load of 0 N as a function of the distance from the mounting flange to the point of load application.

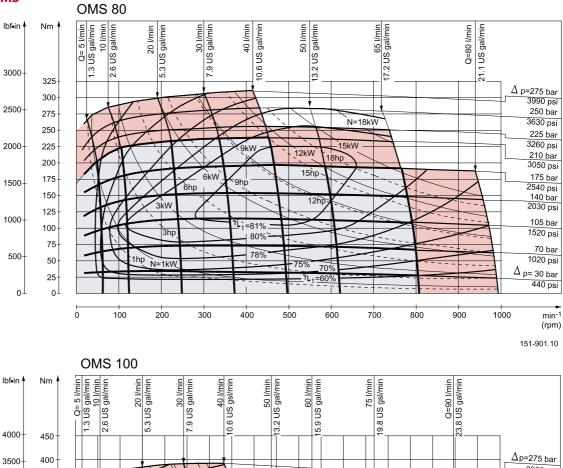
The curve is based on B10 bearing life (2000 hours or 12,000,000 shaft revolutions at 100 min⁻¹) at rated output torque, when mineral-based hydraulic oil with a sufficient content of anti-wear additives, is used.

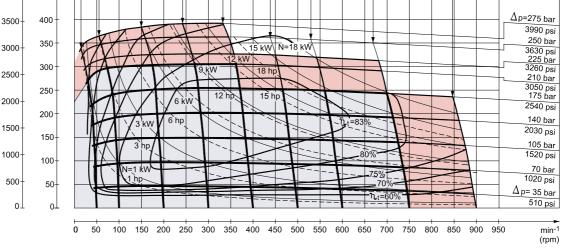
For 3,000,000 shaft revolutions or 500 hours – increase these shaft loads with 52%. The dash curve shows max. radial shaft load. Any shaft load exceeding the values shown in the curve will involve a risk of breakage.

Bearing life calculations can be made using the explanation and formula provided in the chapter "Bearing dimensioning" in the technical information "General Orbital motors" DHMH.PK.100.G2.02 520L0232.

The output shaft runs in tapered roller bearings that permit high axial and radial forces. The permissible radial load on the shaft is shown for an axial load of 0 N as a function of the distance from the mounting flange to the point of load application.

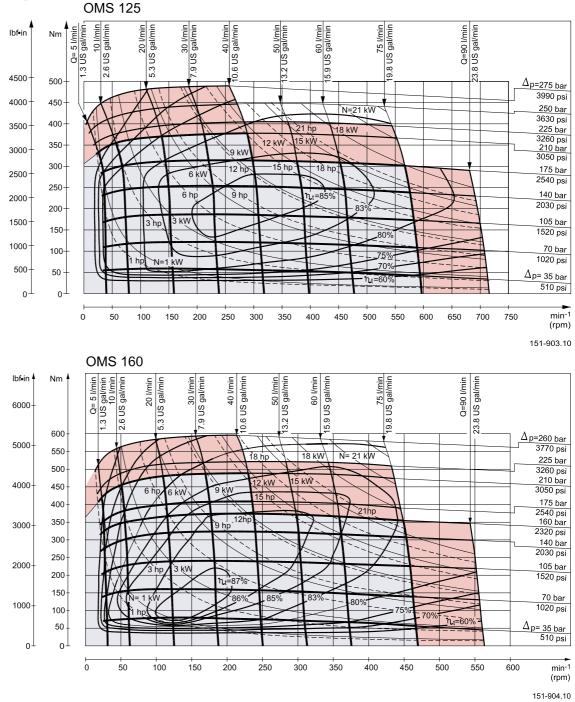
The curve is based on B10 bearing life (2000 hours or 12,000,000 shaft revolutions at 100 min⁻¹) at rated output torque, when mineral-based hydraulic oil with a sufficient content of anti-wear additives, is used.


For 3,000,000 shaft revolutions or 500 hours – increase these shaft loads with 52%. The dash curve shows max. radial shaft load. Any shaft load exceeding the values shown in the curve will involve a risk of breakage.


Bearing life calculations can be made using the explanation and formula provided in the chapter "Bearing dimensioning" in the technical information "General Orbital motors" DHMH.PK.100.G2.02 520L0232.

OMS Technical Information Function diagrams

151-902.10

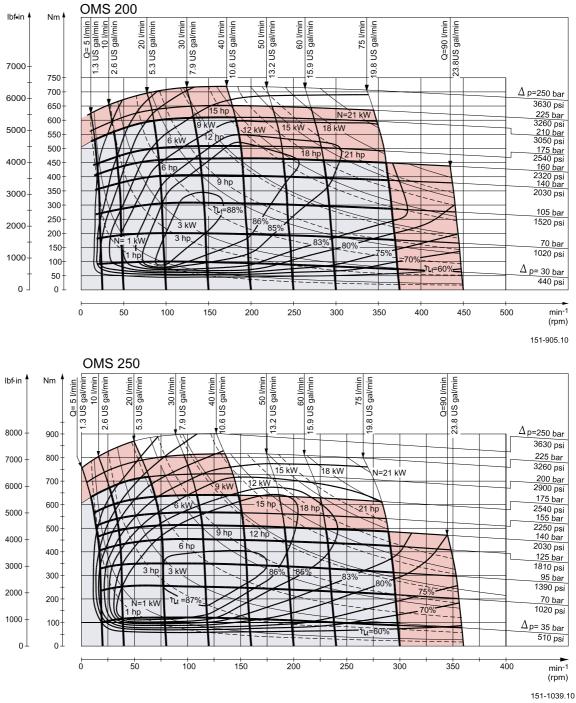

Explanation of function diagram use, basis and conditions can be found on page 5. Continuous range

Intermittent range (max. 10% operation every minute)

Max. permissible continuous/intermittent torque for the actual shaft version can be found on page 8.

FUNCTION DIAGRAMS

Explanation of function diagram use, basis and conditions can be found on page 5. Continuous range

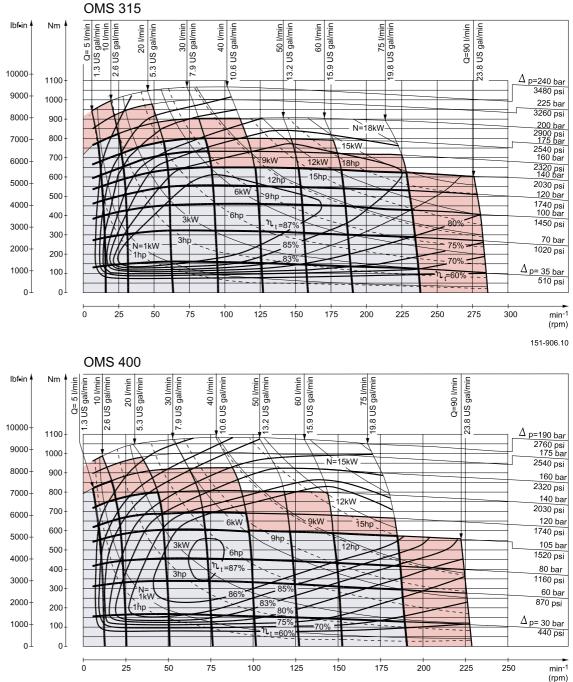

Intermittent range (max. 10% operation every minute)

Max. permissible continuous/intermittent torque for the actual shaft version can be found on page 8.

OMS Technical Information Function diagrams

FUNCTION DIAGRAMS

Explanation of function diagram use, basis and conditions can be found on page 5.

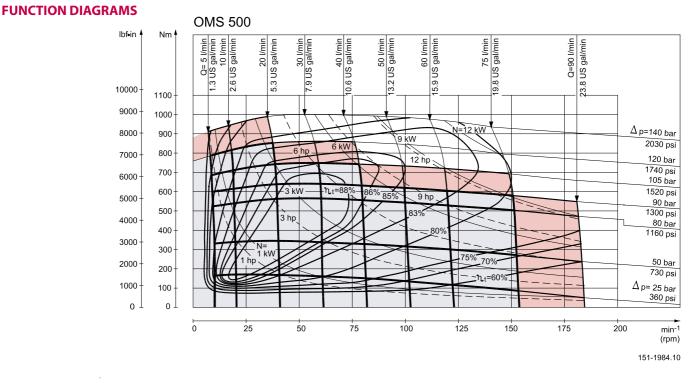

Continuous range

Intermittent range (max. 10% operation every minute)

Max. permissible continuous/intermittent torque for the actual shaft version can be found on page 8.

FUNCTION DIAGRAMS

151-1491.10

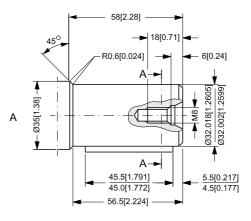

Explanation of function diagram use, basis and conditions can be found on page 5. Continuous range

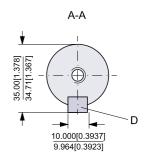
Intermittent range (max. 10% operation every minute)

Max. permissible continuous/intermittent torque for the actual shaft version can be found on page 8.

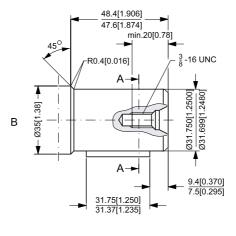
OMS Technical Information Function diagrams

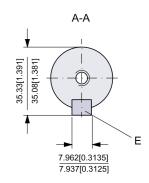
Explanation of function diagram use, basis and conditions can be found on page 5.

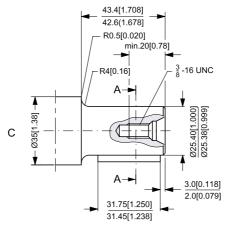

Continuous range

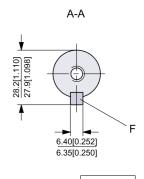

Intermittent range (max. 10% operation every minute)

Max. permissible continuous/intermittent torque for the actual shaft version can be found on page 8.



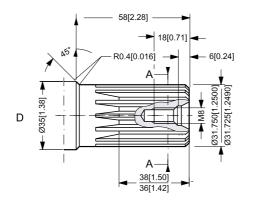

A: Cylindrical 32 mm shaft D: Parallel key A10 × 8 × 45 DIN 6885

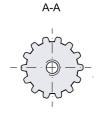

B: Cylindrical 1.25 in shaft E: Parallel key $5/16 \times 5/16 \times 1^{1/4}$ in SAE J744



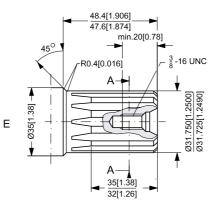
C: Cylindrical 1 in shaft F: Parallel key

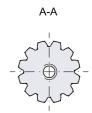
¹/₄ × ¹/₄ × 1¹/₄ in B.S. 46



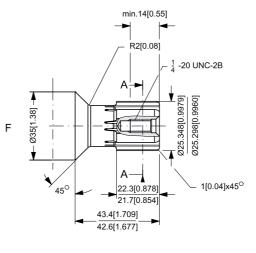


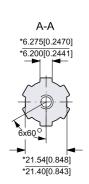
151-876.10





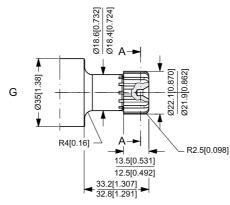
US version


E: Involute splined shaft ANS B92.1 - 1970 standard Flat root side fit Pitch 12/24 Teeth 14 Major dia. 1.25 in Pressure angle 30°



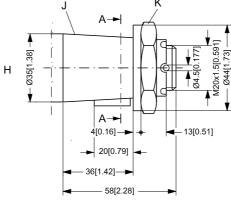
F: Splined shaft SAE 6 B (B.S. 2059) Straight-sided, bottom fitting, deep. Fit 2 Nom. size 1 in

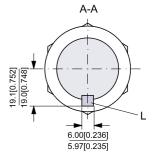
> *Deviates from SAE 6 B (B.S. 2059)

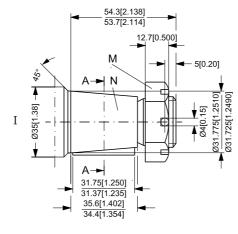


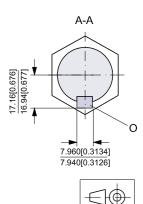
151-1912.10

G. Involute splined shaft ANS B92.1 - 1970 standard Flat root side fit Pitch 16/32 Teeth 13 Major dia. 0.875 in Pressure angle 30°

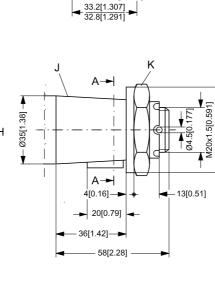


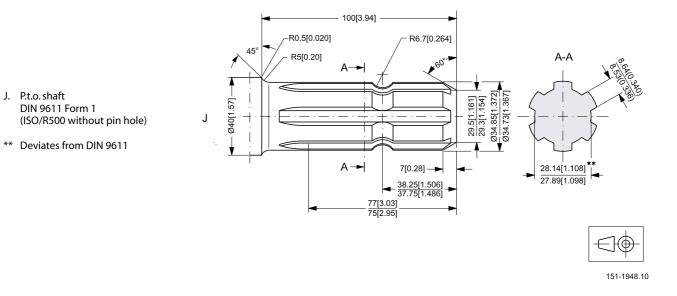



A-A


H: Tapered 35 mm shaft (ISO/R775) K: DIN 937

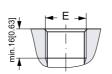
- Across flats: 41 mm Tightening torque: 200 ± 10 Nm [1770 ±85 lbf·in]
- J: Taper 1:10
- L: Parallel key $B6 \times 6 \times 20$ DIN 6885

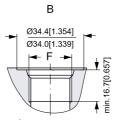




151-1915.10

- I: Tapered 1 ¹/₄ in shaft N: Cone 1:8
- SAE J501
- M: 1 20 UNEF Across flats 1 7/16 in Tightening torque: $200 \pm 10 \text{ Nm} (1770 \pm 85 \text{ lbf-in})$
- O: Parallel key ⁵/16 × ⁵/16 × 1 ¹/4 SAE J501



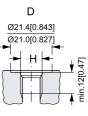


PORT THREAD VERSIONS

А

A: G main ports
E: ISO 228/1 - G¹/2

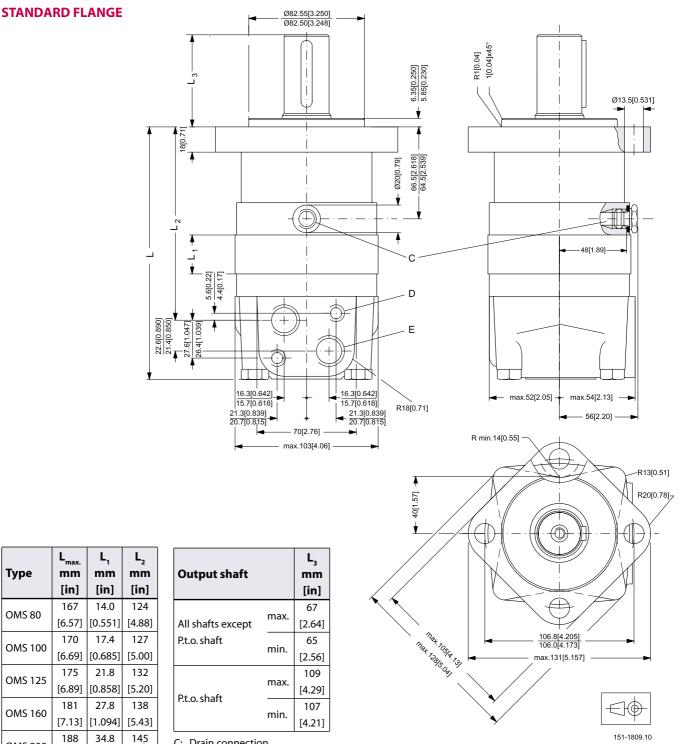
B: UNF main portsF: ⁷/8 - 14 UNF


O-ring boss port

С

G: ISO 228/1 - G¹/4

151-1971.10


D: UNF drain port

H: ⁷/16 - 20 UNF

O-ring boss port

Technical Information Dimensions – European version

C: Drain connection

OMS 200

OMS 250

OMS 315

OMS 400

[7.40]

196

[7.72]

208

[8.19]

221

[8.70]

[1.370]

43.5

[1.713]

54.8

[2.157]

68.4

[2.693]

[5.71]

153

[6.02]

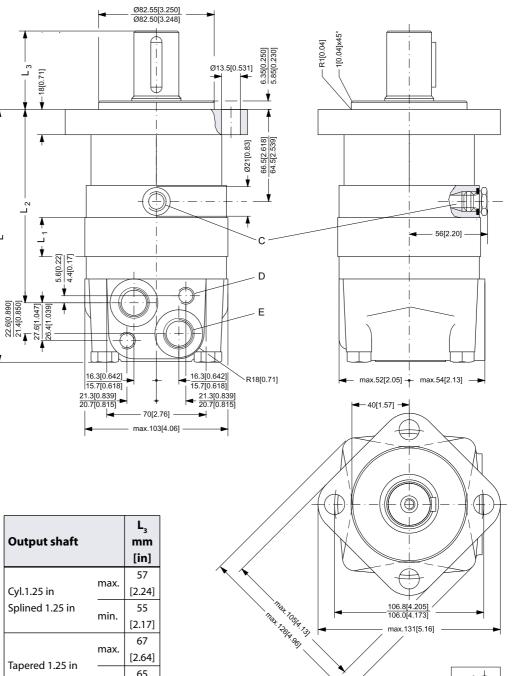
165

[6.50]

178

[7.01]

G ¹/4; 12 mm [0.47 in] deep D: M10; 13 mm [0.51 in] deep


E: G¹/₂; 15 mm [0.59 in] deep

DKMH.PK.130.B2.02 520L0407

STANDARD FLANGE

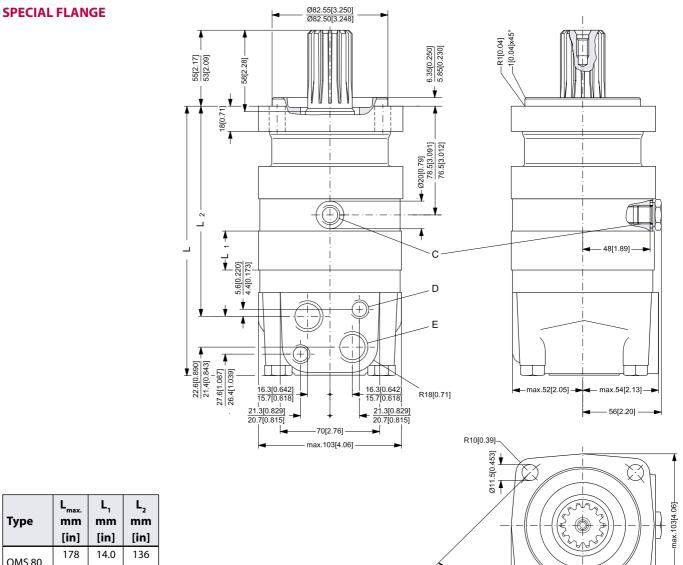
OMS **Technical Information Dimensions – US version**

€⊕ 151-1972.10

	L _{max.}	L ₁	L ₂
Туре	mm	mm	mm
	[in]	[in]	[in]
OMS 80	167	14.0	124
01013 60	[6.57]	[0.551]	[4.88]
OMS 100	170	17.4	127
	[6.69]	[0.685]	[5.00]
OMS 125	175	21.8	132
01013 125	[6.89]	[0.858]	[5.20]
OMS 160	181	27.8	138
	[7.13]	[1.094]	[5.43]
0146 200	188	34.8	145
OMS 200	[7.40]	[1.370]	[5.71]
OMS 250	196	43.5	153
01013 250	[7.72]	[1.713]	[6.02]
OMS 315	208	54.8	165
	[8.19]	[2.157]	[6.50]
OMS 400	221	68.4	178
OMS 400	[8.70]	[2.693]	[7.01]
OMS 500	221	68.4	178
	[8.70]	[2.693]	[7.01]

Outerut chaft		L ₃
Output shaft		mm [in]
	max.	57
Cyl.1.25 in	max.	[2.24]
Splined 1.25 in	min.	55
	mm.	[2.17]
	max.	67
Tapered 1.25 in	mdX.	[2.64]
Tapereu 1.25 m	min.	65
	mm.	[2.56]

C: Drain connection


⁷/₁₆ - 20 UNF;

12 mm [0.47 in] deep O-ring boss port

D: M10; 13 mm [0.51 in] deep E: ⁷/₈ - 14 UNF;

16.7 mm [0.657 in] deep O-ring boss port

	L _{max.}	L ₁	L ₂
Туре	mm	mm	mm
	[in]	[in]	[in]
OMS 80	178	14.0	136
	[7.01]	[0.551]	[5.35]
OMS 100	182	17.4	140
	[7.17]	[0.685]	[5.51]
OMS 125	186	21.8	144
01015 125	[7.32]	[0.858]	[5.67]
OMS 160	192	27.8	150
01015 100	[7.56]	[1.094]	[5.91]
OMS 200	199	34.8	157
01013 200	[7.83]	[1.370]	[6.18]
OMS 250	208	43.5	166
01013 230	[8.19]	[1.713]	[6.54]
OMS 315	219	54.8	177
	[8.62]	[2.157]	[6.97]
OMS 400	232	68.4	190
01013 400	[9.13]	[2.693]	[7.48]

C: Drain connection

G ¹/₄; 12 mm [0.47 in] deep

D: M10; 13 mm [0.51 in] deep E: $G^{1/2}$; 15 mm [0.59 in] deep 151-1810.10

()

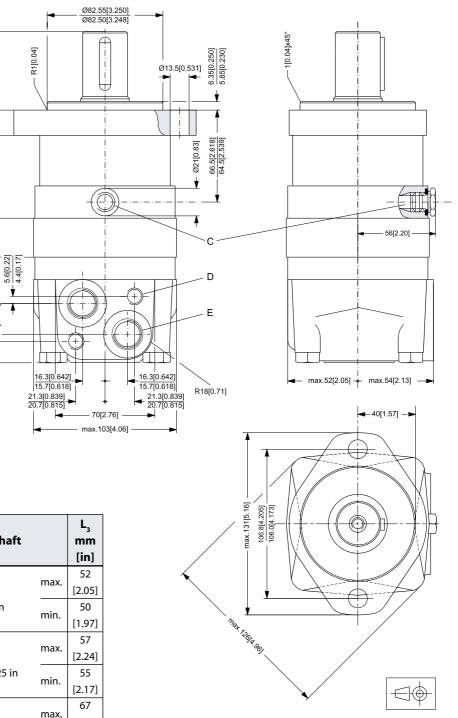
max.103[4.06]

0106 944 -053

18[0.71]

Ì

Ā


Ĵ

¥

ć t

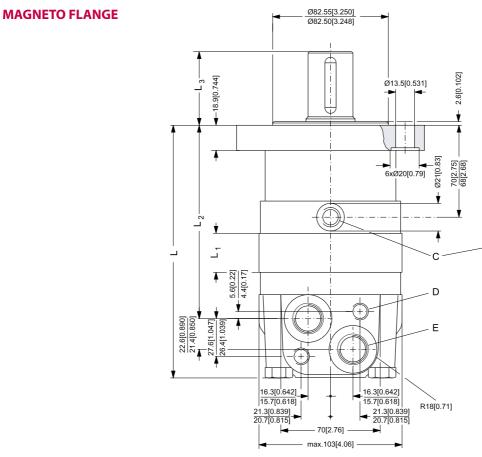
22.6[0.890] 21.4[0.850] 27.6[1.047] 26.4[1.039]

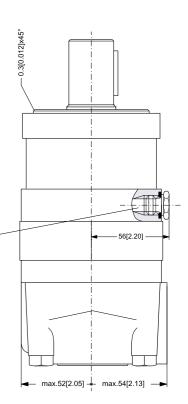
A-2 FLANGE

151-1979.10

	L _{max.}	L,	L ₂	
Туре	mm	mm	mm	
	[in]	[in]	[in]	
OMS 80	167	14.0	124	
	[6.57]	[0.551]	[4.88]	
OMS 100	170	17.4	127	
	[6.69]	[0.685]	[5.00]	
OMS 125	175	21.8	132	
01015 125	[6.89]	[0.858]	[5.20]	
OMS 160	181	27.8	138	
	[7.13]	[1.094]	[5.43]	
OMS 200	188	34.8	145	
01013 200	[7.40]	[1.370]	[5.71]	
OMS 250	196	43.5	153	
01015 250	[7.72]	[1.713]	[6.02]	
OMS 315	208	54.8	165	
010 515	[8.19]	[2.157]	[6.50]	
OMS 400	221	68.4	178	
01015 400	[8.70]	[2.693]	[7.01]	
OMS 500	221	68.4	178	
01013 500	[8.70]	[2.693]	[7.01]	

		L
Output shaft		mm
		[in]
	max.	52
Cyl.1 in	max.	[2.05]
Splined 1 in	min.	50
		[1.97]
	may	57
Cyl.1.25 in	max.	[2.24]
Splined 1.25 in	min.	55
	mm.	[2.17]
	m 21/	67
Taparad 1 25 in	max.	[2.64]
Tapered 1.25 in	min.	65
	min.	[2.56]

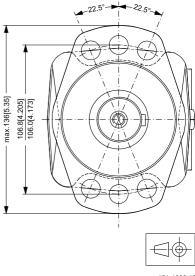

C: Drain connection 7/16 - 20 UNF;


12 mm [0.47 in] deep

- D: M10; 13 mm [0.51 in] deep E: ⁷/₈ 14 UNF;
 - 16.7 mm [0.657 in] deep O-ring boss port

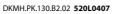
DKMH.PK.130.B2.02 520L0407

	L _{max.}	L ₁	L ₂
Туре	mm	mm	mm
	[in]	[in]	[in]
OMS 80	171	14.0	128
01013 80	[6.73]	[0.551]	[5.04]
OMS 100	174	17.4	131
	[6.85]	[0.685]	[5.16]
OMS 125	179	21.8	136
01013 125	[7.05]	[0.858]	[5.35]
OMS 160	185	27.8	142
	[7.28]	[1.094]	[5.59]
OMS 200	192	34.8	149
01015 200	[7.56]	[1.370]	[5.87]
OMS 250	200	43.5	157
01013 250	[7.87]	[1.713]	[6.18]
OMS 315	212	54.8	169
	[8.35]	[2.157]	[6.65]
OMS 400	225	68.4	182
01013 400	[8.86]	[2.693]	[7.17]
OMS 500	225	68.4	182
	[8.86]	[2.693]	[7.17]

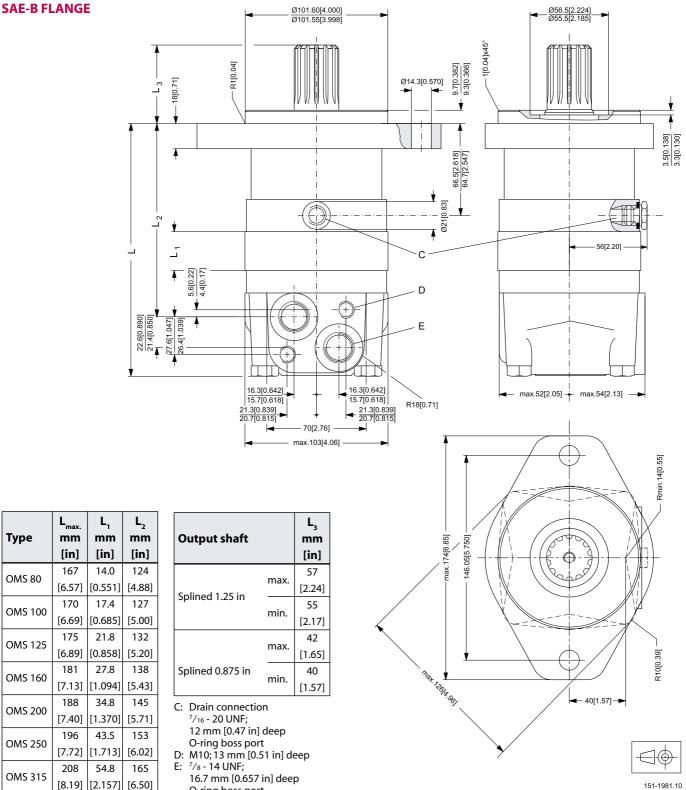

Output shaft		L ₃ mm [in]
	max.	49
Cyl.1 in	max.	[1.93]
Splined 1 in	min.	47
		[1.85]
	max.	54
Cyl.1.25 in	mdx.	[2.13]
Splined 1.25 in	min.	52
		[2.05]

C: Drain connection

⁷/₁₆ - 20 UNF; 12 mm [0.47 in] deep


O-ring boss port D: M10; 13 mm [0.51 in] deep E: ⁷/₈ - 14 UNF;

16.7 mm [0.657 in] deep O-ring boss port



-22.5°-

16.7 mm [0.657 in] deep O-ring boss port

OMS 400

OMS 500

221

[8.70]

221

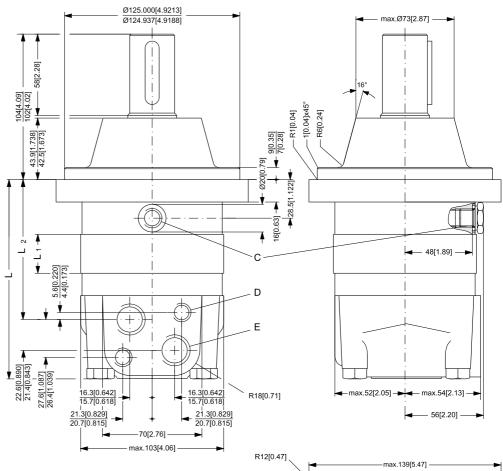
[8.70]

68.4

[2.693]

68.4

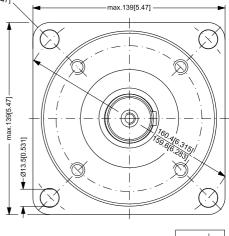
[2.693] [7.01]


178

[7.01]

178

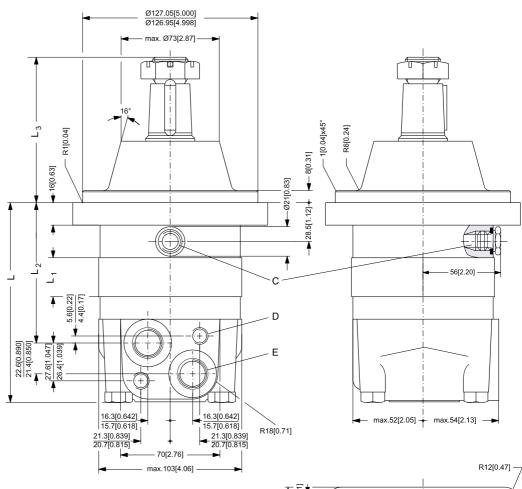
WHEEL



Туре	L _{max.}	L ₁ mm	L ₂ mm
.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	[in]	[in]	[in]
OMSW	129	14.0	87
80	[5.08]	[0.551]	[3.43]
OMSW	132	17.4	90
100	[5.20]	[0.685]	[3.54]
OMSW	137	21.8	95
125	[5.39]	[0.858]	[3.74]
OMSW	143	27.8	101
160	[5.63]	[1.094]	[3.98]
OMSW	150	34.8	108
200	[5.91]	[1.370]	[4.25]
OMSW	158	43.5	116
250	[6.22]	[1.713]	[4.57]
OMSW	170	54.8	128
315	[6.69]	[2.157]	[5.04]
OMSW	183	68.4	142
400	[7.20]	[2.693]	[5.59]

C: Drain connection

G ¹/₄; 12 mm [0.47 in] deep D: M10; 13 mm [0.51 in] deep

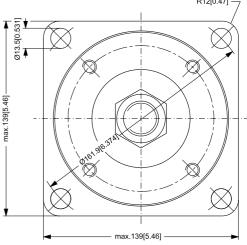

E: G¹/₂; 15 mm [0.59 in] deep

151-1812.10

Туре	L _{max.} L ₁ mm mm		L ₂ mm	
	[in]	[in]	[in]	
OMSW	130	14.0	88	
80	[5.12]	[0.551]	[3.46]	
OMSW	133	17.4	91	
100	[5.24] [0.685]		[3.58]	
OMSW	138 21.8		96	
125	[5.43] [0.858]		[3.78]	
OMSW	144 27.8		102	
160	[5.67]	[1.094]	[4.02]	
OMSW	151	34.8	109	
200	[5.94]	[1.370]	[4.29]	
OMSW	159	43.5	117	
250	[6.26]	[1.713]	[4.61]	
OMSW	171	54.8	129	
315	[6.73]	[2.157]	[5.08]	
OMSW	184	68.4	142	
400	[7.24]	[2.693]	[5.59]	
OMSW	184	68.4	142	
500	[7.24]	[2.693]	[5.59]	

Output shaft	L ₃ mm [in]	
	max.	94
Cyl.1.25 in	max.	[3.70]
Cyl. 1.25 III	min.	92
		[3.62]
	max.	104
Tapered 1.25 in		[4.09]
Tapered 1.25 III	min.	102
		[4.02]

C: Drain connection

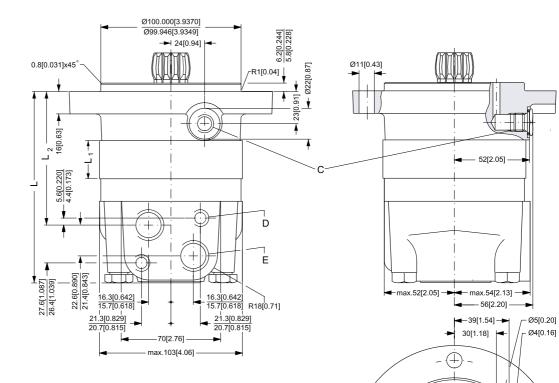

⁷/16 - 20 UNF;

12 mm [0.47 in] deep

O-ring boss port

D: M10; 13 mm [0.51 in] deep E: ⁷/₈ - 14 UNF;

16.7 mm [0.657 in] deep O-ring boss port



151-1982.10

SHORT

Ĺ.

Trans	L _{max.} L ₁ mm mm		L ₂	
Туре			mm	
	[in]	[in]	[in]	
OMSS	124	14.0	83	
80	[4.88]	[0.551]	[3.27]	
OMSS	128	17.4	86	
100	[5.04]	[0.685]	[3.39]	
OMSS	132	21.8	90	
125	[5.20]	[0.858]	[3.54]	
OMSS	138	27.8	96	
160	[5.43]	[1.094]	[3.78]	
OMSS	145	34.8	103	
200	[5.71]	[1.370]	[4.06]	
OMSS	154	43.5	112	
250	[6.06]	[1.713]	[4.41]	
OMSS	165	54.8	123	
315	[6.50]	[2.157]	[4.84]	
OMSS	179	68.4	137	
400	[7.05]	[2.693]	[5.39]	

C: Drain connection

G ¹/₄; 12 mm [0.47 in] deep

D: M10; 13 mm [0.51 in] deep

E: G¹/₂; 15 mm [0.59 in] deep

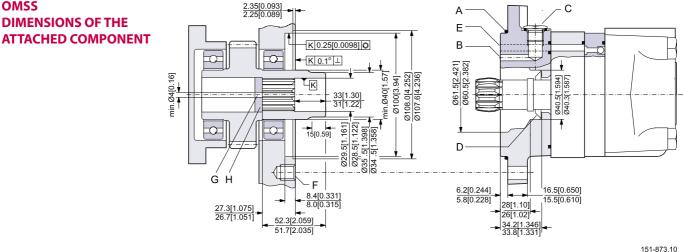
24[0.94]

A

T

đ

 (\pm)


INSTALLING THE OMSS The cardan shaft of the OMSS motor acts as an "output shaft". Because of the movement of the shaft, no seal can be fitted at the shaft output. Internal oil leakage from the motor will therefore flow into the attached component.

During start and operation it is important that the spline connection and the bearings in the attached component receive oil and are adequately lubricated. To ensure that the spline connection receives sufficient oil, a conical sealing ring between the shaft of the attached component and the motor intermediate plate is recommended. This method is used in the OMS.

The conical sealing ring (code. no. 633B9023) is supplied with the motor.

To ensure that oil runs to the bearings and other parts of the attached component, the stop plate must have a hole in it (see fig. below).

We recommend an O-ring between motor and attached component. The O-ring (code no. 151F1033) is supplied with the motor. If motor and attached component have been separated, remember to refill before starting up. Fill the oil through the drain connection.

A: O-ring: 100 × 3 mm

B: External drain channel

- Drain connection C:
- G 1/4; 12 mm [0.47 in] deep
- D: Conical seal ring

- E: Internal drain channel
- F: M10; min. 15 mm [0.59 in] deep
 - G: Oil circulation hole
- H: Hardened stop plate

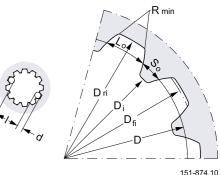
OMSS

INTERNAL SPLINE DATA FOR THE COMPONENT TO **BE ATTACHED**

The attached component must have internal splines corresponding to the external splines on the motor cardan shaft (see drawing below).

Material:

Case hardening steel with a tensile strength corresponding at least to 20 MoCr4 (900 N/mm²) or SAE 8620.


Hardening specification:

- On the surface: $HV = 750 \pm 50$
- 0.7 ± 0.2 mm under the surface: HV = 560 •

Internal involute spline data

Standard ANS B92.1-1970, class 5 (corrected m · X = 0.8; m = 2.1166)

Fillet root side fit		mm	in
Number of teeth	z	12	12
Pitch	DP	12/24	12/24
Pressure angle		30°	30°
Pitch dia.	D	25.4	1.0
Major dia.	D_{ri}	28.0 ⁰ _{-0.1}	1.10 ⁰ _{-0.004}
Form dia. (min.)	D _{fi}	27.6	1.09
Minor dia.	D	23.0 ^{+0.033}	0.9055 +0.0013
Space width (circular)	L。	4.308 ±0.020	0.1696 ±0.0008
Tooth thickness (circular)	S _o	2.341	0.09217
Fillet radius	R _{min.}	0.2	0.008
Max. measurement between pins*	I	17.62 ^{+0.15} ₀	0.700 ⁰ _{-0.006}
Pin dia.	d	4.835 ± 0.001	0.1903 ±0.00004

* Finished dimensions (when hardened)

DRAIN CONNECTION ON OMSS OR ATTACHED COMPONENT

A drain line ought to be used when pressure in the return line can exceed the permissible pressure on the shaft seal of the attached component.

The drain line can be connected at two different points:

- 1) at the motor drain connection
- 2) at the drain connection of the attached component.

If a drain line is fitted to the attached component, it must be possible for oil to flow freely between motor and attached component.

The drain line must be led to the tank in such a way that there is no risk of the motor and attached component being drained of oil when at rest.

The maximum pressure in the drain line is limited by the attached component and its shaft seal.